
Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

0

Efficient RDMA-based Multi-port Collectives

on Multi-rail QsNetII Clusters

Ying Qian and Ahmad Afsahi
Department of Electrical and Computer Engineering

Queen’s University

Kingston, ON, Canada

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

1

Presentation Outline

• Introduction

• Overview of QsNetII

• Experimental Framework

• Motivation

• Collective Algorithms

• Performance Results

• Conclusions

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

2

High Performance Clusters

• Clusters have become the predominant computing platforms providing
high-performance, and high-availability. Such systems:

Tackle high-end applications known as Grand Challenge problems

Provide services such as search engines, data mining, eCommerce, web
hosting, digital libraries

• Main components in Clusters of Multiprocessors:
The Symmetric Multiprocessors (SMP) node

The Communication Subsystem

• Clusters need high-performance networks, and efficient communication
system software.

Myrinet

QsNetII

InfiniBand

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

3

Multi-rail Networks

• Multi-rail networks have been introduced to overcome bandwidth
limitations for today’s most demanding applications, and to enhance
fault tolerance.

QsNetII (native support) and InfiniBand (MVAPICH)

• How to distribute the traffic over multiple rails?

Multiplexing

Message Striping

• QsNetII uses multiple NICs per node to construct a multi-rail network.

Native support at the user level for a simple even message striping

Only for point-to-point messages

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

4

Collective Communications

• Many parallel applications need communication patterns that involve
collective data movement and global control, known as collective
communications.

• Such applications mostly use Message Passing Interface (MPI).

MPI supports both point-to-point and collective communications.

Efficient and scalable implementation of collectives is very
important to the performance of such applications.

• Problem statement:

Can we design and implement efficient collectives on top of
multi-rail Quadrics QsNetII?

What are the design challenges?

How much performance improvement can be achieved?

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

5

Presentation Outline

• Introduction

• Overview of QsNetII

• Experimental Framework

• Motivation

• Collective Algorithms

• Performance Results

• Conclusions

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

6

Overview of QsNetII

• QsNetII is the latest generation interconnect from Quadrics, offering low
latency and high bandwidth. It consists of two ASICs: Elan4 and Elite4.

Provides a protected user-level access to NIC.

Supports a globally shared virtual-memory system. Data can be
transferred directly from a source virtual address to a destination
virtual address.

Supports a connectionless model, with reliable and ordered delivery.

Communication software includes both MPI and SHMEM,
implemented with libelan and libelan4 in the Elan library.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

7

Overview of QsNetII

• QsNetII:

Supports point-to-point send/receive, and Remote Direct Memory
Access (RDMA) models.

RDMA write (elan_put) and RDMA read (elan_get) are
supported. No need to register buffers.

Send/receive mode is supported through Tports, a two-sided
message-passing semantic as in MPI. MPI uses Tports as its
transport layer.

Even message striping support for large messages on multi-rail
networks for Elan RDMA put and get, SHMEM put and get, and
Tports send/receive.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

8

Overview of QsNetII

• QsNetII supports a number of collectives directly at the Elan level.

Hardware broadcast (elan_hbcast), and hardware barrier
(elan_gsync)

Reduction (elan_reduce), gather (elan_gather), and personalized all-
to-all (elan-alltoall)

These collectives are directly used by the MPI library. Enhancing their
performance will directly affect the MPI layer.

Collectives are currently implemented on top of point-to-point Tports
or elan_put, and may gain multi-rail striping from those underlying
subsystems.

elan_put and elan_doput are non-blocking functions used in the
implementation.

elan_doput is similar to elan_put with the exception that is sets a
destination event on completion.

elan_wait is used to test or wait on for completion of the transfer.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

9

Presentation Outline

• Introduction

• Overview of QsNetII

• Experimental Framework

• Motivation

• Collective Algorithms

• Performance Results

• Conclusions

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

10

Experimental Framework
Four 4-way Dell PowerEdge 6650

Processors
Kernel

L1 cache

L2 cache

L3 cache 512KB shared and unified, cache

QsNetII switch Two QS8A-AA E-series 8-way switches
QsNetII NIC Two QM500-B per node
Quadrics software Hawk release with the kernel patch qsnetp2, kernel

module 5.10.qsnet, QsNet library 1.5.6-1, and QsNetII

library 2.2.4-1.
Launch tool pdsh 2.6.1

MPI implementation Quadrics MPI, version 1.24-47.intel81

PCI-X 100 MHz, 64 bit

Main Memory

4 – 1.4 GHz Intel Xeon MP per node
Vanilla version 2.6.9

12KB execution trace cache, 8KB data cache

256KB shared and unified

2GB DDR-SDRAM per node, on a 400 MHz FSB

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

11

Presentation Outline

• Introduction

• Overview of QsNetII

• Experimental Framework

• Motivation

• Collective Algorithms

• Performance Results

• Conclusions

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

12

Elan RDMA Write (elan_put)

• Two-rail has a much better performance than single-rail.

• elan_get achieves the same bandwidth, however, has a slightly larger
short message latency.

0
1
2
3
4
5
6
7

1 4 16 64 256 1K
Message size (bytes)

Ti
m

e
(µ

s)

Uni-directional (2-rail) Uni-directional (1-rail)
Bi-directional (2-rail) Bi-directional (1-rail)
Both-way (2-rail) Both-way (1-rail)

0
200
400
600
800

1000
1200
1400

1 16 256 4K 64K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

Uni-directional (2-rail) Uni-directional (1-rail)
Bi-directional (2-rail) Bi-directional (1-rail)
Both-way (2-rail) Both-way (1-rail)

`

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

13

Elan Tports (send/recv)

• The single-rail bandwidth is similar to RDMA, but dual-rail falls short of.

• The short message latency of Tports is slightly larger than the RDMA.

0

2

4

6

8

10

4 16 64 256 1K
Message size (bytes)

Ti
m

e
(µ

s)

Uni-directional (2-rail) Uni-directional (1-rail)
Bi-directional (2-rail) Bi-directional (1-rail)
Both-way (2-rail) Both-way (1-rail)

0
200
400
600
800

1000
1200

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

Uni-directional (2-rail) Uni-directional (1-rail)
Bi-directional (2-rail) Bi-directional (1-rail)
Both-way (2-rail) Both-way (1-rail)

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

14

MPI send/receive

• Both-way MPI bandwidth is not affected by the dual-rail.

• The short message MPI latency is close to that of the Tports.

0
200
400
600
800

1000
1200

1 16 256 4K 64K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

Uni-directional (2-rail) Uni-directional (1-rail)
Bi-directional (2-rail) Bi-directional (1-rail)
Both-way (2-rail) Both-way (1-rail)

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

15

Current Collective Performance (16 processes)

Hardware broadcast (elan_hbcast)

0
50

100
150
200
250
300

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

Software broadcast (elan_bcast)

0
20
40
60
80

100
120

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

Gather (elan_gather)

0

50

100

150

200

250

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

Alltoall (elan_alltoall)

0

100

200

300

400

4 32 256 2K 16K 128K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

MPI_Scatter

0
200
400
600
800

1000
1200

1 16 256 4K 64K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)

MPI_Allgather

0

40

80

120

160

1 16 256 4K 64K 1M
Message size (bytes)

B
an

dw
id

th
 (M

B
/s

)
On top of Tports

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

16

Observation

• With a few exceptions, the current collectives do not benefit from the
multi-rail systems. Excellent opportunities exist for devising multi-rail
collectives. Those include:

Designing single-port collective algorithms that gain multi-rail
striping from the underlying communication subsystem.

Designing multi-port collective algorithms for multi-rail
systems that also benefit from multi-rail striping.

We will focus on Scatter, Gather, and All-to-all
Personalized Exchange collectives, and implement
them directly at the Elan level.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

17

Presentation Outline

• Introduction

• Overview of QsNetII

• Experimental Framework

• Motivation

• Collective Algorithms

• Performance Results

• Conclusions

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

18

Multi-port Collectives: Preliminaries

• Assume N is the number of processes, and k is the number of ports in the
multi-port algorithms (equal to the number of available rails).

• Each process has the ability to send and receive k messages
simultaneously on its k links.

• The assumption is that the number of processes, N, is a power of (k + 1).
Otherwise, dummy processes is assumed to exist until the next power of
(k + 1), and the algorithms apply with little or no performance loss.

• Definitions:

Scatter operation: the root process has a unique message for each of
the remaining N - 1 processes.

Gather operation: is the exact reverse of the scatter operation. The
root process receives a message from each of the remaining N - 1
processes.

All-to-all Personalized Exchange operation: in this collective, each
process has a unique message for each of the remaining N - 1
processes.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

19

Multi-port Scatter Algorithms

• Algorithm A: Multi-port Spanning Binomial Tree algorithm for Scatter
1. The scattering process sends k messages of length N/(k + 1) each to its

k children. At the end of this step, there are (k + 1) processes having
N/(k + 1) different messages.

2. These processes at step 2 send one (k + 1)-th of their initial message to
each of their immediate k children.

3. This process continues and all processes are informed after logk+1 N
steps.

ts is the message startup time, lm is the message size in bytes,

and τ is the time to transfer one byte.

T = (ts × logk+1 N) + (lm × τ) (k +1)(logk+1 N)− i

i=1

logk+1 N

∑

T = (ts × logk+1 N) + N −1
k

(lm × τ)

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

20

Multi-port Scatter Algorithms

• 9-process scatter: 0

[1,2,3] [4,5,6] [7] [8]

1 4 7 8
[2] [3] [5] [6]

2 3 5 6

This algorithm has a logarithmic number of steps and suitable for
short messages.

Processes may be spanned such that packing/unpacking would
not be needed. Otherwise, intermediate copies may be needed.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

21

Multi-port Scatter Algorithms

• Algorithm B: Multi-port Sequential Tree algorithm for Scatter:

At each step, the scattering process sends its k different
messages to k other processes. There are a total of (N - 1)/k
communication steps. Therefore, the total communication cost
is:

Suitable for medium to large message sizes

)(1 τ×+×
−

= ms lt
k

NT

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

22

Multi-port Gather Algorithm

• Multi-port Spanning Binomial Tree algorithm for Gather:

The algorithm is the exact reverse of the scatter, and the same
spanning tree can be used.

Communication starts from the leaf processes.

Messages are combined in the intermediate processes until it
reaches the gathering root.

The total communication cost is:

T = (ts × log k+1 N)+ N −1
k

(lm ×τ)

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

23

Multi-port All-to-all Personalized Exchange

• Multi-port Direct algorithm for All-to-all Personalized Exchange:

Processes are arranged in a virtual ring.

At step i, process p sends its message to processes (p + (i - 1)k + 1)
mod N, (p + (i - 1)k + 2) mod N, …, (p +ik) mod N.

The total communication cost is:

)(1 τ×+×
−

= ms lt
k

NT

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

24

RDMA-based Implementation

• No need for memory registrations

• No need for address exchange for message transfers.

• Senders have direct control over the rails by using elan_doput function.
Even message striping is used.

elan_wait is used to make sure the user-buffer can be re-used.

• Remote event notification is enabled in elan_doput for multi-rail
systems. This allows multi-rail striped (ELAN_RAIL_ALL) put
messages to have a devent (destination event) for each rail.

The destination event is set once in each rail and the destination
process calls elan_initEvent once for each rail, and wait for each
ELAN-EVENT to be returned. This guarantees a message is
delivered in its entirety on a multi-rail system.

• No synchronization is used in the implementations.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

25

Presentation Outline

• Introduction

• Overview of QsNetII

• Experimental Framework

• Motivation

• Collective Algorithms

• Performance Results

• Conclusions

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

26

Scatter Performance

Scatter (16 processes)

0

10

20

30

40

50

4 8 16 32 64 128 256 512
Message size (bytes)

Ti
m

e
(μ

s)

BSRW SSRW
Scatter (16 processes)

0
200
400
600
800

1000

1K 2K 4K 8K 16K 32K
Message size (bytes)

Ti
m

e
(μ

s)

BSRW SSRW

Scatter (16 processes)

0
5000

10000
15000
20000
25000
30000

64K 128K 256K 512K 1M
Message size (bytes)

Ti
m

e
(μ

s)

BSRW SSRW
As expected, the
multi-port binomial
algorithm is better
for short messages.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

27

Scatter Scalability

Scatter scalability (16B)

0

10

20

30

40

3 9 16
Number of processes

Ti
m

e
(μ

s)

BSRW SSRW

Scatter scalability (8KB)

0

50

100

150

200

250

3 9 16
Number of processes

Ti
m

e
(μ

s)

BSRW SSRW

Scatter scalability (256KB)

0

2000

4000

6000

8000

3 9 16
Number of processes

Ti
m

e
(μ

s)

BSRW SSRW

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

28

Gather Performance

Gather (16 processes)

0
10
20
30
40
50

4 8 16 32 64 128 256 512

Message size (bytes)

Ti
m

e
(μ

s)

Elan_gather BGRW

Gather (16 processes)

0

1000

2000

3000

4000

1K 2K 4K 8K 16K 32K

Message size (bytes)

Ti
m

e
(μ

s)

Elan_gather BGRW

Gather (16 processes)

0
30000
60000
90000

120000
150000

64K 128K 256K 512K 1M

Message size (bytes)

Ti
m

e
(μ

s)

Elan_gather BGRW Improvement of up to
6.35 for 1MB message.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

29

Gather Scalability

Gather scalability (16B)

0

4

8

12

16

3 9 16
Number of processes

Ti
m

e
(μ

s)

Elan_gather BGRW

Gather scalability (8KB)

0

200

400

600

800

3 9 16
Number of processes

Ti
m

e
(μ

s)

Elan_gather BGRW

Gather scalability (256KB)

0

10000

20000

30000

40000

3 9 16
Number of processes

Ti
m

e
(μ

s)

Elan_gather BGRW
With increasing number
of processes, elan_gather
is better for short
messages.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

30

All-to-all Personalized Exchange Performance

Altoall (16 processes)

0
30
60
90

120
150

4 8 16 32 64 128 256 512
Message size (bytes)

Ti
m

e
(μ

s)
Elan_alltoall DARW

Altoall (16 processes)

0

1000

2000

3000

4000

1K 2K 4K 8K 16K 32K
Message size (bytes)

Ti
m

e
(μ

s)

Elan_alltoall DARW

Altoall (16 processes)

0

30000

60000

90000

120000

64K 128K 256K 512K 1M
Message size (bytes)

Ti
m

e
(μ

s)

Elan_alltoall DARW Improvement of up to
2.19 for 16KB message.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

31

All-to-all Personalized Exchange Scalability

Alltoall scalability (16B)

0

20

40

60

80

3 9 16
Number of processes

Ti
m

e
(μ

s)
Elan_alltoall DARW

Alltoall scalability (8KB)

0

500

1000

1500

2000

3 9 16
Number of processes

Ti
m

e
(μ

s)

Elan_alltoall DARW

Alltoall scalability (256KB)

0

10000

20000

30000

3 9 16
Number of processes

Ti
m

e
(μ

s)

Elan_alltoall DARW

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

32

Presentation Outline

• Introduction

• Overview of QsNetII

• Experimental Framework

• Motivation

• Collective Algorithms

• Performance Results

• Conclusions

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

33

Conclusions

• Efficient implementation of collective operations is critical to the
performance of applications.

• We proposed a couple of multi-port algorithms for short and long
messages for the scatter operation.

• The implementation of the multi-port gather gains an
improvement of up to 6.35 for 1MB message over elan-gather.

• The multi-port all-to-all personalized exchange performs better
than elan_alltoall by a factor of 2.19 for 16KB messages.

• For short messages, better algorithms should be used.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

34

Future Work

Work on standard exchange, and bruck’s index algorithms are
under way.

We intend to use shared memory for short messages among
the co-located processes to speedup the collectives.

Adaptive striping will also be considered.

We will be working on other collectives as well.

NIC-based or NIC-assisted collectives for multi-rail networks
are of interest.

Basic hardware collectives could be used to implement other
collectives.

Evaluate using larger testbeds.

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

35

Acknowledgment

• This work was supported by:

Natural Sciences and Engineering Research Council of
Canada (NSERC)

Canada Foundation for Innovation (CFI)

Ontario Innovation Trust (OIT)

Queen’s University

Ontario Graduate Scholarship for Science and
Technology (OGSST)

Parallel Processing Research Laboratory
Department of Electrical and Computer Engineering

IEEE CAC-2006

36

Questions?

	Presentation Outline
	High Performance Clusters
	Multi-rail Networks
	Collective Communications
	Presentation Outline
	Overview of QsNetII
	Overview of QsNetII
	Overview of QsNetII
	Presentation Outline
	Experimental Framework
	Presentation Outline
	Elan RDMA Write (elan_put)
	Elan Tports (send/recv)
	MPI send/receive
	Current Collective Performance (16 processes)
	Observation
	Presentation Outline
	Multi-port Collectives: Preliminaries
	Multi-port Scatter Algorithms
	Multi-port Scatter Algorithms
	Multi-port Scatter Algorithms
	Multi-port Gather Algorithm
	Multi-port All-to-all Personalized Exchange
	RDMA-based Implementation
	Presentation Outline
	Scatter Performance
	Scatter Scalability
	Gather Performance
	Gather Scalability
	All-to-all Personalized Exchange Performance
	All-to-all Personalized Exchange Scalability
	Presentation Outline
	Conclusions
	Future Work
	Acknowledgment
	Questions?

